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On the Condition Number of Local Bases 
for Piecewise Cubic Polynomials 

By J. M. Varah* 

Abstract. The condition number of the Gram matrix associated with piecewise poly- 
nomial finite element bases is discussed in general, and computed explicitly for cubic 
splines and cubic Hermite polynomials. In the latter case, we discuss the inherent 

ambiguity in the basis, and find the minimum condition number. 

1. Introduction. There has been a great deal of interest lately in the approxi- 

mate solution of various problems by so-called global methods: that is, to find a solu- 
tion of the form 

where the qi(x) are given functions. Data fitting problems and boundary value prob- 

lems have both been successfully treated in this way, particularly when the basis 

functions {fi(x)} are piecewise polynomials with support over a small region in x. We 

refer to Schultz [2] and Strang and Fix [3] for a general discussion of such methods. 

Of crucial importance in computing with these bases is their condition, or 

"amount of linear dependence". This can be measured by the condition number of 

the Gram matrix (mass matrix in [3]): 

G11 = |fq(x)0j(x) dx. 

Since G is a positive definite symmetric matrix, the condition number in the 12 norm 

is K(G) = X max (G)/X min (G). We shall use this throughout the paper. Of course, 
if the basis functions are orthogonal over the whole x-domain, K = 1; however, when 

we demand that the support of each basis function be restricted to a small region, we 

no longer have orthogonality, and the question of the condition of various bases be- 

comes interesting. 

In this paper we consider the condition of the most common piecewise poly- 

nomial bases: smooth cubic splines and piecewise cubic Hermite polynomials. For 

the former, this is merely a matter of direct computation; however, for the latter 

there is still some choice to be made, and we investigate the problem of minimizing 
the condition. 

Note. As the referee points out, this condition, or amount of linear dependence, 
is more accurately measured by the square root of the condition number of the 
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Gram matrix; although this does not change the results described in this paper greatly, 
it should be kept in mind. 

2. The General Method. For a given general set of abscissas in the x-domain, 
the piecewise polynomial basis functions over these abscissas will vary throughout the 
interval and the Gram matrix, although banded, will have elements varying in size 
depending on the spacing of the abscissas. If we consider only equally spaced abscis- 
sas, then, as in [3, p. 209ff], the Gram matrix is Toeplitz, or block Toeplitz, and its 
condition is more readily discernable. Indeed, since the mesh spacing h only appears 
as a common factor, it does not influence the condition, so the important considera- 
tion is the condition of the doubly infinite Toeplitz (or block-Toeplitz) Gram matrix. 
This corresponds to either a doubly infinite x-domain with fixed h, or a finite x-domain 
with h > 0. 

Now let us concentrate on a B-spline basis; these are piecewise polynomials of 
degree 2n - 1, and continuity 2n - 2 at the abscissas, with support over 2n intervals 
(see for example de Boor [I] ). Since there is one basis function for each abscissa, 
each basis function Oi(x) is a translated scaled copy of one basic function Sn(x), 
centered at 0 with support (- n, n). Thus, the Gram matrix Gn has the form 

/ao al 
... 

a2n-1\ 

(2.1) H J 

where ai = fSn(x)Sn(x - i) dx, i = 0, . .. , 2n - 1. The spectrum of the doubly in- 

finite version of this Toeplitz matrix is well known: 

f ~~2n-1 
Sp(Hn) = {p(O) = ao + 2 E a, cosiO}. 

Thus K(Hn) = maxop(O)/minop(O) and 0 < K(Hn) < o* since Hn is positive definite, 
so p(O) > 0. 

For n = 1 (piecewise linear functions), Sn(x) is the familiar roof function; as in 
[3, p. 211], we have ao = 4, al = 1, and 

max0(4 + 2cosO) 

min9(4+2cosO) 

For n = 2 (cubic splines), S2(x) is the basic cubic B-spline (see Schultz [2, p. 

73]) 
(2-x)3, 1?x 62, 

S2(x)= 3x3-6x2+4, 06x61, 

S(-x) x < xO. 

A short computation gives 
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a 79 IU=871 I 2 
6 

"3 
1 

a0=17, 3140' 27' a3=140. 

The corresponding p(O) has its maximum at 0 = 0: p(O) = 36, and its minimum at 

0 = 7: p(ir) = 34/35. Thus, 

315 
K(H2)= 317 -18.53. 

In fact, these condition numbers for B-spline bases of smooth splines of any 

order can be easily derived from Schoenberg [4]: 

K(Hn) = 1/2(X7/2)4 = (4n)! 
IT o(2j+ I)-4n 24n(24n-1)B 

where Bn is the nth Bernoulli number. Also, max norm condition numbers for the 

same bases are given in de Boor [1] . 

3. The Cubic Hermite Polynomials. The general piecewise Hermite polynomials 

have degree 2n - 1 and continuity n - 1 at the abscissas; because of this lower con- 

tinuity, there are more basis functions: n associated with each abscissa. The so- 

called natural Hermite basis, obtained by Hermite interpolation of the delta function 
at successive abscissas, gives the smallest support possible, namely two subintervals. 
For n = 2, for equally spaced abscissas, the basis functions are translated scaled cop- 

ies of two functions defined over [- 1, 1] (see Schultz [2, p. 27]): 

=(2x + 1)(x - 1)2, 0 x 1, 
H1?)(x) = X 

-) - X<0 tH(?)(-x-1 ?lx 0, 

(3.1) 
(-{X(X -1)2, O x?1, 

HI' )(x) = 
( I <X<I 

--HI'I(-x) -I?x?O. 

Of course, this is not the only basis with minimal support; we could use trans- 

lated scaled copies of any linear combination of these functions, say 

(3.2) B() =H(O) +?aJ(l), B(') = (,H(?) +H(l))S, 

where we have included a scaling factor s as well, to give the most general basis. One 

choice used in practice is a = -3, ,B = 1/3, s = 3, which gives the B-spline basis: 

B(?)(x) = (I - X)3, 0 <SX < II B(1)(x) = (X - 1)2 (5x + 1), 0 SX < 1, 

= B(l)(-x), -I Sx S 0, = B(?) (-x), -1 Sx S 0. 

These have the property of being positive throughout the interval of support. 
In what follows we shall discuss the problem of choosing a, ,B, s to minimize 

the condition number of the Gram matrix. Because of the two basic basis functions 

and the fact that the support is two subintervals, the Gram matrix has the block- 

Toeplitz form 
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G C(~T A C 

where A and C are 2 x 2 blocks. (For the general Hermite case, A and C are n x n.) 
The spectrum of the doubly infinite version of this is given by the set of eigenvalues 
of the 2 x 2 positive definite Hermitian matrix 

P(O) = A + Ced6 + CTe-iO. 

Thus 

-max, Xi (P()) 
(3.3) K(05, (, S) = mnX2(P(O)) 

First, we consider a = = 0, that is, using the natural Hermite basis with some 
scaling of the second function M(l)(x). The basic Gram matrix (with s = 1) has, 
after a simple computation with (3.1), 

(12 o\ 
54 -13 

420 o 8)' 
420 ( 

This gives, except for a constant, 

(156 + 54 cosO -l3i sinO 
P(O)PO) = 3i sin 0 4 - 3 cosO) 

Since we are scaling the second basis function (see (3.2)), and this function affects 
the second row and column of A and C, we obtain 

A(s) = DADT, CQs) = DCDT, P(s; 0) = DPo(0)DT5 

where 

D 1 0) 

THEOREM 3.1. The scaled natural cubic Hermite basis (3.1) has condition K(S) 
> 7. This minimum is achieved for s2 < S2 < S2, where S2 32, s2 - 96. 

Proof: From the above, we have 

(156 + 54 cosO (-l3isin0)s 
(3.4) P(0; s) ( 3i sin 0)s (4 - 3 cos 0)s2/ 

Since P(0; s) is positive definite, we can denote the larger by X1(0; s), the smaller by 
X2(0; s), and both are always positive. Since X1(0; s) is larger than any diagonal ele- 
ment, and X2(0; S) is correspondingly smaller, 

X2(0; S) ? (4 - 3 cos 0)s2 S X1(0; s). 

Thus, 
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max X1(0; s) max(4 - 3 cos 0)s2 

min, X2(0; s) 
> 

min0 (4 - 3 cos 0)S2 = 

To show the range where this is actually achieved is more difficult. We have explicitly 

2X1(0; s) =F + VD, 2X2(0; s) = F-D, 

F = 4(39 + s2) + 3 cos 0(18 - S2), 

D = [4(39 - s2) + 3 cos 0(18 + s2)] 2 + 676S2 sin2o. 

First, we compute these eigenvalues at the endpoints 0 = 0 and ir. (Since they are 
functions of cos 0, we need only consider the range 0 < 0 ? ir.) We have 

2X1(0) = 210 + s2 + 1210 - s21, 2X2(0) = 210 + s2 - 1210 - s21, 

2X1 (7r) = 102 + 7s2 + 1102 - 7S21, 2X2(7r) = 102 + 7s2 - 1102 - 7S2 1. 

Thus, 

2X1 (0) = max(420, 2s2), 2X2(0) = min (420, 2s2), 

2X1(7r) = max (204, 14s2), 2X2(X7) = min (204, 14S2). 

Hence, 

max (2X1 (0), 2X1 (X7)) = 420(= 2X1 (0)) for s2 ? 30, 

= 14s2(= 2X1 (7r)) for s2 > 30, 

min (2X2(0), 2X2(ir)) = 2s2(= 2X2(0)) for s2 S 102, 

= 204(=2X2(ir)) for s2 > 102. 

So we see immediately that for s2 < 30 and s2 > 102, 
max0X1 (0; s) > max (X1 (0), X1 (7r)) 

minX2(0; s) min 2 (0) X(2 (r)) > 

However, the right-hand ratio is exactly 7 for 30 < s2 < 102; and this will equal 
K(S) if the max and min are achieved at the endpoints. To examine this, rewrite D 
as a function of cos 0: 

D = a COS20 + 2b cos 0 + c, 

with a = 16(39 - s2)2 + 262s2, b = 12(18 + s2)(39 - s2), c = 9(18 + s2)2 
262s2. So as functions of cos 0, for fixed s, 

2)= F + 
I 

oD- 2 FD 2 
ID' 

2X2 = +-312 (DD"/2 - (D'/2)2). 

Computing this term in parentheses, we find 

2X12(cos 0) = ?JD-312(ac - b2). 

So the signs of X", )X" are fixed for all 0, and they are opposite. In other words, for 
each fixed s, one eigenvalue is a convex function of cos 0, and the other is concave. 
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And a brief computation gives 

ac - b2 = -7 * 262s2(s4 - 128S2 + 36 * 85). 

Thus when the quadratic in s2 is negative (which occurs for s2 < s2 < s2, s2 = 

64 - 2-/259 _ 32, s2 = 64 + 2V/259 _ 96), X1(cos 0) is convex and X2(cos 0) is con- 
cave; thus, in this region the max of X1 and min of X2 must occur at the endpoints 
(0 = O or 1). Thus for s2 < s2 < s2, 

Ks () = m ) - () = ' Q.E.D. min (X2 (O), X2 (jr)) X2(O) 

Now we consider the general basis (3.2). Because of the way this is formed, the 
corresponding P-matrix 

P(a, , s; 0) =SPO(0)ST, S=(i ) 

and the problem now is to find 

(3.5) min K(P) = min [max 0Xt (SPO(0)S T) 
Q99's Q'O L min,0X2(SP (0)S T)J 

THEOREM 3.2. For the general cubic Hermite basis (3.2), the condition number 
K(P) > 7. 

Proof: First, we decompose S into QR factors (Q orthogonal, R upper triangular), 
so that P = QRPORTQT; and we can reduce the problem to 

min K(QTPQ) = min K(RPOR T), 
Xps ap3,s 

since this matrix has the same eigenvalues as P. In fact, we have 

R p r ) 1 /1 +(?2S2 a + s2) 

0 = qt ) o/1 + g2 s2 0 s(c - 1) 

Clearly, there is a one to one relationship between the triples (a, ,B, s) and (P, q, r), 
providing we keep p > 1. So we can reformulate our problem (3.5) as 

rmax, Xi (RPOR T) 
(3.6) min [: ~ T)] (3.6) ~~~R minOX2(RPoR) 

Now, we decompose PO(0) into triangular factors PO(0) = UU*. From the definition 
of PO(0), this gives 

/ x iY 1 (V'7(65 - 36cos0 + cos20) -13isin0 

\0 z/ /88-6cos \ 0 4-3cos0/ 

Thus, RPoR 
T = (R- (RO*, with 

/'px rz+ipy\ 
RU= . 

0 qz / 
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Now 

max X1 (RPORT) = maxjjR U112 > max (qz(O))2 
0 ~ ~~~0 2 

0 

and 

min X2(RPORT) = min JI(RL-1 11-2 6 min(qz(0))2. 
0 0 0 

Thus, 

i K(P) >max0(z(O))2 max0(4 - 3 cos) QE 
R min0(z(O))2 min0(4 - 3cos0) 

This minimum condition of 7 is in fact attained for other choices of a, (, and s. 
Suppose a and (3 are of opposite sign, and we choose s2 = s= -a/B (>0). Then the 
matrix R used in the proof of Theorem 3.2 is 

R=\/ 
_ 

/( 0); 
\0 -So, 

and the corresponding condition number K is the same as that for the diagonally scaled 
matrix 

(1 )( 0) ( 
PO0) 

( ) 

which is P(O; so) in (3.4). Thus from Theorem 3.1, if s2 < s2= -a/ < s2, this 
scaling produces a matrix with K = 7. 

Now, we return to the B-spline basis (a = -3, (3 = 1/3, s = 3). It is fairly easy 
to check that this value of s does give the minimal condition for this choice of a and 
B (the two basic basis functions B(0)(x), BM' )(x) are then mirror images). And since 
S2 a/:, this condition number is the same as the diagonally scaled matrix J(O; 3) 
in (3.4). From the proof of Theorem 3.1, the eigenvalues of this are 

2X1(O; 3) = F + VD, 2X2(0; 3) = F- VD, 

where 

F = 192 + 27 cosO, D = (120 + 81 cosO)2 + 782 sin20. 

A brief computation shows that X1(0; 3) is maximized at 0 = 0 and X2(0; 3) is mini- 
mized at 0 = 0, giving K(P(0; 3)) = 70/3. 

Thus the condition number of the B-spline basis is slightly higher than for the 
(properly scaled) natural basis (although both are perfectly acceptable for normal 
floating-point computation). However, we should emphasize that this analysis holds 
only for an equally spaced mesh; for an arbitrary mesh the situation may be complete- 
ly different. 

To conclude, we computed the condition numbers for various finite versions of 

natural and B-spline bases for C1 cubics (by computing the condition numbers of the 

appropriate finite segments of the Gram matrix). The results were as follows: 
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natural basis (a = = 0) B-spline basis (a = -3, j3 = 1/3) 

sin 10 20 30 40 sin 10 20 30 40 
1 165 195 203 206 3 18.6 21.9 22.6 22.9 
5 6.96 7.98 8.19 8.28 1 55.2 64.3 66.5 67.4 
6 5.83 6.64 6.83 6.90 
9 6.29 6.78 6.90 6.94 
10 6.69 6.96 7.02 7.04 

As Theorem 3.1 indicates, the condition of the natural basis increases to 7.0 as 
n > oo for any s with N/32 ? s ? -/96. This is also interesting from a matrix scaling 
point of view: as n >* 00, the best diagonal scaling DGD is not unique; yet for any 
finite n, since the matrix G has block-tridiagonal form with the diagonal blocks them- 
selves diagonal matrices, the best scaling of G is such that the diagonal elements are 
equal (i.e. s = V/39); see for example Forsythe and Straus [5] . 
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